Maximal-entropy random walk unifies centrality measures

نویسندگان

  • J. K. Ochab
  • Zdzislaw Burda
چکیده

This paper compares a number of centrality measures and several (dis-)similarity matrices with which they can be defined. These matrices, which are used among others in community detection methods, represent quantities connected to enumeration of paths on a graph and to random walks. Relationships between some of these matrices are derived in the paper. These relationships are inherited by the centrality measures. They include measures based on the principal eigenvector of the adjacency matrix, path enumeration, as well as on the stationary state, stochastic matrix, or mean first-passage times of a random walk. As the random walk defining the centrality measure can be arbitrarily chosen, we pay particular attention to the maximal-entropy random walk, which serves as a very distinct alternative to the ordinary (diffusive) random walk used in network analysis. The various importance measures, defined both with the use of ordinary random walk and the maximal-entropy random walk, are compared numerically on a set of benchmark graphs with varying mixing parameter and are grouped with the use of the agglomerative clustering technique. It is shown that centrality measures defined with the two different random walks cluster into two separate groups. In particular, the group of centrality measures defined by the maximal-entropy random walk does not cluster with any other measures on change of graphs' parameters, and members of this group produce mutually closer results than members of the group defined by the ordinary random walk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Backtracking Centrality Based Random Walk on Networks

Random walks are a fundamental tool for analyzing realistic complex networked systems and implementing randomized algorithms to solve diverse problems such as searching and sampling. For many real applications, their actual effect and convenience depend on the properties (e.g. stationary distribution and hitting time) of random walks, with biased random walks often outperforming traditional unb...

متن کامل

Localization of the maximal entropy random walk.

We define a new class of random walk processes which maximize entropy. This maximal entropy random walk is equivalent to generic random walk if it takes place on a regular lattice, but it is not if the underlying lattice is irregular. In particular, we consider a lattice with weak dilution. We show that the stationary probability of finding a particle performing maximal entropy random walk loca...

متن کامل

Measures of maximal entropy

We extend the results of Walters on the uniqueness of invariant measures with maximal entropy on compact groups to an arbitrary locally compact group. We show that the maximal entropy is attained at the left Haar measure and the measure of maximal entropy is unique.

متن کامل

Rethinking Centrality: The Role of Dynamical Processes in Social Network Analysis

Many popular measures used in social network analysis, including centrality, are based on the random walk. The random walk is a model of a stochastic process where a node interacts with one other node at a time. However, the random walk may not be appropriate for modeling social phenomena, including epidemics and information diffusion, in which one node may interact with many others at the same...

متن کامل

Random-Walk Closeness Centrality Satisfies Boldi-Vigna Axioms

Recently Boldi and Vigna proposed axioms that would characterize good notions of centrality. We study a random-walk version of closeness centrality and prove that is satisfies Boldi-Vigna axioms for non-directed graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 86 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2012